Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Pathogens ; 13(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535560

RESUMO

It is controversial how useful bioassays are for identifying the in vivo toxicity of hazardous environmental exposures. In this study, fruiting bodies of forest mushrooms (n = 46), indoor mold colonies (n = 412), fungal secondary metabolites (n = 18), xenobiotic chemicals such as biocides and detergents (n = 6), and methanol extracts of indoor dusts from urban buildings (n = 26) were screened with two different bioactivity assays: boar sperm motility inhibition (BSMI) and inhibition of cell proliferation (ICP) tests. For the forest mushrooms, the toxicity testing result was positive for 100% of poisonous-classified species, 69% of non-edible-classified species, and 18% of edible-classified species. Colonies of 21 isolates of Ascomycota mold fungal species previously isolated from water-damaged buildings proved to be toxic in the tests. Out of the fungal metabolites and xenobiotic chemicals, 94% and 100% were toxic, respectively. Out of the indoor dusts from moldy-classified houses (n = 12) and from dry, mold-free houses (n = 14), 50% and 57% were toxic, respectively. The bioassay tests, however, could not differentiate the samples from indoor dusts of moldy-classified buildings from those from the mold-free buildings. Xenobiotic chemicals and indoor dusts were more toxic in the BSMI assay than in the ICP assay, whereas the opposite results were obtained with the Ascomycota mold colonies and fungal secondary metabolites. The tests recognized unknown methanol-soluble thermoresistant substances in indoor settled dusts. Toxic indoor dusts may indicate a harmful exposure, regardless of whether the toxicity is due to xenobiotic chemicals or microbial metabolites.

2.
Nat Commun ; 15(1): 2690, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538615

RESUMO

Copper transporting P-type (P1B-1-) ATPases are essential for cellular homeostasis. Nonetheless, the E1-E1P-E2P-E2 states mechanism of P1B-1-ATPases remains poorly understood. In particular, the role of the intrinsic metal binding domains (MBDs) is enigmatic. Here, four cryo-EM structures and molecular dynamics simulations of a P1B-1-ATPase are combined to reveal that in many eukaryotes the MBD immediately prior to the ATPase core, MBD-1, serves a structural role, remodeling the ion-uptake region. In contrast, the MBD prior to MBD-1, MBD-2, likely assists in copper delivery to the ATPase core. Invariant Tyr, Asn and Ser residues in the transmembrane domain assist in positioning sulfur-providing copper-binding amino acids, allowing for copper uptake, binding and release. As such, our findings unify previously conflicting data on the transport and regulation of P1B-1-ATPases. The results are critical for a fundamental understanding of cellular copper homeostasis and for comprehension of the molecular bases of P1B-1-disorders and ongoing clinical trials.


Assuntos
Proteínas de Transporte de Cátions , Cobre , Cobre/química , ATPases Transportadoras de Cobre/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/metabolismo , Domínios Proteicos , Sítios de Ligação
3.
Analyst ; 149(6): 1861-1871, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38348676

RESUMO

Many strains among spore-forming bacteria species are associated with food spoilage, foodborne disease, and hospital-acquired infections. Understanding the impact of environmental conditions and decontamination techniques on the metabolic activity, viability, and biomarkers of these spores is crucial for combatting them. To distinguish and track spores and to understand metabolic mechanisms, spores must be labeled. Staining or genetic modification are current methods for this, however, these methods can be time-consuming, and affect the viability and function of spore samples. In this work, we investigate the use of heavy water for permanent isotope labeling of spores and Raman spectroscopy for tracking sporulation/germination mechanisms. We also discuss the potential of this method in observing decontamination. We find that steady-state deuterium levels in the spore are achieved after only ∼48 h of incubation with 30% D2O-infused broth and sporulation, generating Raman peaks at cell silent region of 2200 and 2300 cm-1. These deuterium levels then decrease rapidly upon spore germination in non-deuterated media. We further find that unlike live spores, spores inactivated using various methods do not lose these Raman peaks upon incubation in growth media, suggesting these peaks may be used to indicate the viability of a spore sample. We further observe several Raman peaks exclusive to deuterated DPA, a spore-specific chemical biomarker, at e.g. 988 and 2300 cm-1, which can be used to track underlying changes in spores involving DPA. In conclusion, permanent spore labeling using deuterium offers a robust and non-invasive way of labeling bacterial spores for marking, viability determination, and characterising spore activity.


Assuntos
Ácidos Picolínicos , Esporos Bacterianos , Deutério , Ácidos Picolínicos/química , Esporos Bacterianos/química , Bacillus subtilis/metabolismo
4.
J Phys Chem B ; 128(7): 1638-1646, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38326108

RESUMO

The ability to detect and inactivate spore-forming bacteria is of significance within, for example, industrial, healthcare, and defense sectors. Not only are stringent protocols necessary for the inactivation of spores but robust procedures are also required to detect viable spores after an inactivation assay to evaluate the procedure's success. UV radiation is a standard procedure to inactivate spores. However, there is limited understanding regarding its impact on spores' spectral and morphological characteristics. A further insight into these UV-induced changes can significantly improve the design of spore decontamination procedures and verification assays. This work investigates the spectral and morphological changes to Bacillus thuringiensis spores after UV exposure. Using absorbance and fluorescence spectroscopy, we observe an exponential decay in the spectral intensity of amino acids and protein structures, as well as a logistic increase in dimerized DPA with increased UV exposure on bulk spore suspensions. Additionally, using micro-Raman spectroscopy, we observe DPA release and protein degradation with increased UV exposure. More specifically, the protein backbone's 1600-1700 cm-1 amide I band decays slower than other amino acid-based structures. Last, using electron microscopy and light scattering measurements, we observe shriveling of the spore bodies with increased UV radiation, alongside the leaking of core content and disruption of proteinaceous coat and exosporium layers. Overall, this work utilized spectroscopy and electron microscopy techniques to gain new understanding of UV-induced spore inactivation relating to spore degradation and CaDPA release. The study also identified spectroscopic indicators that can be used to determine spore viability after inactivation. These findings have practical applications in the development of new spore decontamination and inactivation validation methods.


Assuntos
Esporos Bacterianos , Raios Ultravioleta , Esporos Bacterianos/química , Bacillus subtilis/química , Análise Espectral Raman/métodos , Aminoácidos/metabolismo
5.
Sci Rep ; 13(1): 18758, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907463

RESUMO

We present a new approach to segment and classify bacterial spore layers from Transmission Electron Microscopy (TEM) images using a hybrid Convolutional Neural Network (CNN) and Random Forest (RF) classifier algorithm. This approach utilizes deep learning, with the CNN extracting features from images, and the RF classifier using those features for classification. The proposed model achieved 73% accuracy, 64% precision, 46% sensitivity, and 47% F1-score with test data. Compared to other classifiers such as AdaBoost, XGBoost, and SVM, our proposed model demonstrates greater robustness and higher generalization ability for non-linear segmentation. Our model is also able to identify spores with a damaged core as verified using TEMs of chemically exposed spores. Therefore, the proposed method will be valuable for identifying and characterizing spore features in TEM images, reducing labor-intensive work as well as human bias.


Assuntos
Algoritmo Florestas Aleatórias , Esporos Bacterianos , Humanos , Redes Neurais de Computação , Máquina de Vetores de Suporte
6.
J Vet Dent ; : 8987564231189655, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37680039

RESUMO

Antimicrobial resistance is one of the largest threats to global health. In society as well as in healthcare facilities, antimicrobial resistance is rapidly increasing with the main reason being overuse and misuse of antibiotics combined with inadequate infection prevention. For humans, dental care accounts for about 10% of all antibiotic prescriptions, making it an important target for antibiotic stewardship interventions. Corresponding figures for veterinary care are currently lacking but dental disease is frequently diagnosed in small animals. An important first step in the work towards prudent use of antibiotics is to understand antibiotic prescription habits and through that estimate the adherence to veterinary antibiotic guidelines as well as the need for education, training, and improved policies. The aim of this article is to present the results of a multicentre point prevalence survey sent to Swedish IVC Evidensia practices during autumn 2021 to recognize the use of antibiotics associated with dental treatments in dogs, cats, and rabbits. During the study period, 4.4% of the dental patients in Swedish IVC Evidensia small animal veterinary practices received antibiotics. The most used antibiotics prescribed were ampicillin, amoxicillin, and clindamycin indicating an overall high level of compliance to veterinary dental guidelines. This article demonstrates that Swedish veterinarians use antibiotics prudently in small animal dentistry and the results may be used as a future global benchmark.

7.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119545, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37481079

RESUMO

The function of ion-transporting Na+,K+-ATPases depends on the surrounding lipid environment in biological membranes. Two established lipid-interaction sites A and B within the transmembrane domain have been observed to induce protein activation and stabilization, respectively. In addition, lipid-mediated inhibition has been assigned to a site C, but with the exact location not experimentally confirmed. Also, possible effects on lipid interactions by disease mutants dwelling in the membrane-protein interface remain relatively uncharacterized. We simulated human Na+,K+-ATPase α1ß1FXYD homology models in E1 and E2 states in an asymmetric, multicomponent plasma membrane to determine both wild-type and disease mutant lipid-protein interactions. The simulated wild-type lipid interactions at the established sites A and B were in agreement with experimental results thereby confirming the membrane-protein model system. The less well-characterized, proposed inhibitory site C was dominated by lipids lacking inhibitory properties. Instead, two sites hosting inhibitory lipids were identified at the extracellular side and also a cytoplasmic CHL-binding site that provide putative alternative locations of Na+,K+-ATPase inhibition. Three disease mutations, Leu302Arg, Glu840Arg and Met859Arg resided in the lipid-protein interface and caused drastic changes in the lipid interactions. The simulation results show that lipid interactions to the human Na+,K+-ATPase α1ß1FXYD protein in the plasma membrane are highly state-dependent and can be disturbed by disease mutations located in the lipid interface, which can open up for new venues to understand genetic disorders.


Assuntos
Proteínas de Membrana , ATPase Trocadora de Sódio-Potássio , Humanos , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Sítios de Ligação , Proteínas de Membrana/metabolismo , Lipídeos/genética
8.
J Atten Disord ; 27(12): 1309-1321, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37282510

RESUMO

OBJECTIVE: To evaluate treatment patterns for ADHD in Sweden. METHOD: Observational retrospective study of patients with ADHD from the Swedish National Patient Register and Prescribed Drug Register, 2018 to 2021. Cross-sectional analyses included incidence, prevalence, and psychiatric comorbidities. Longitudinal analyses (newly diagnosed patients) included medication, treatment lines, duration, time-to-treatment initiation, and switching. RESULTS: Of 243,790 patients, 84.5% received an ADHD medication. Psychiatric comorbidities were common, particularly autism among children, and depression in adults. Most frequent first-/second-line treatments were methylphenidate (MPH; 81.6%) and lisdexamfetamine dimesylate (LDX; 46.0%), respectively. In the second-line, LDX was most frequently prescribed (46.0%), followed by MPH (34.9%), then atomoxetine (7.7%). Median treatment duration was longest for LDX (10.4 months), followed by amphetamine (9.1 months). CONCLUSION: This nationwide registry study provides real-life insights into the current epidemiology of ADHD and the changing treatment landscape for patients in Sweden.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , Metilfenidato , Adulto , Criança , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Estimulantes do Sistema Nervoso Central/uso terapêutico , Estudos Transversais , Dimesilato de Lisdexanfetamina/uso terapêutico , Metilfenidato/uso terapêutico , Sistema de Registros , Estudos Retrospectivos , Suécia/epidemiologia , Resultado do Tratamento
9.
Sci Rep ; 13(1): 9560, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308526

RESUMO

Dielectrophoresis is an electric field-based technique for moving neutral particles through a fluid. When used for particle separation, dielectrophoresis has many advantages compared to other methods, like providing label-free operation with greater control of the separation forces. In this paper, we design, build, and test a low-voltage dielectrophoretic device using a 3D printing approach. This lab-on-a-chip device fits on a microscope glass slide and incorporates microfluidic channels for particle separation. First, we use multiphysics simulations to evaluate the separation efficiency of the prospective device and guide the design process. Second, we fabricate the device in PDMS (polydimethylsiloxane) by using 3D-printed moulds that contain patterns of the channels and electrodes. The imprint of the electrodes is then filled with silver conductive paint, making a 9-pole comb electrode. Lastly, we evaluate the separation efficiency of our device by introducing a mixture of 3 µm and 10 µm polystyrene particles and tracking their progression. Our device is able to efficiently separate these particles when the electrodes are energized with ±12 V at 75 kHz. Overall, our method allows the fabrication of cheap and effective dielectrophoretic microfluidic devices using commercial off-the-shelf equipment.

10.
Neurology ; 101(2): e114-e124, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37202170

RESUMO

BACKGROUND AND OBJECTIVES: Spinal cord infarction (SCInf) is a rare condition where consensus regarding diagnostic criteria is lacking, and misdiagnosis or delayed diagnosis can be detrimental. The aim of this study was to describe baseline findings and predictors of long-term functional outcome in a population-based cohort of patients with SCInf. METHODS: All adult patients (aged 18 years or older) treated at the spinal cord injury unit of the study center, between 2006 and 2019, and discharged with a G95 diagnosis (other and unspecified disease of the spinal cord) were screened for inclusion. The diagnostic criteria proposed by Zalewski et al. were retrospectively applied to evaluate the certainty of the SCInf diagnosis. RESULTS: A total of 270 patients were screened and 57 were included in the study, of whom 30 had a spontaneous SCInf and 27 had a periprocedural SCInf. The median American Spinal Cord Injury Association Impairment Scale (AIS) on admission was C, which at a median follow-up of 2.1 years had improved to D (p = 0.002). Compared with periprocedural cases, those with spontaneous SCInf showed significantly better admission AIS (median AIS D vs B, p < 0.001), fewer multilevel SCInf (27% vs 59%, p = 0.029), shorter hospital stay (median 22 vs 44 days, p < 0.001), and better AIS (median AIS D vs C, p < 0.001) and ambulatory status on long-term follow-up (66% vs 1%, p < 0.001). Regression analyses revealed that spontaneous SCInfs (odds ratio [OR] 5.91 [1.92-18.1], p = 0.002) and more favorable admission AIS (OR 33.6 [7.72-146], p < 0.001) were significant predictors of more favorable AIS at follow-up, with admission AIS demonstrating independent predictive ability (OR 35.9 [8.05-160], p < 0.001). DISCUSSION: SCInf is a rare neurologic emergency lacking specific management guidelines. While the presumptive diagnosis is based on the typical presentation and clinical findings, T2-weighted and diffusion-weighted MRI were the most useful diagnostic tools in establishing a definitive diagnosis. Our data show that spontaneous SCInf mostly affected a single spinal cord segment, whereas periprocedural cases were more extensive, had poorer AIS on admission, poorer ambulatory function, and longer hospital stays. Regardless of the etiology, significant neurologic improvements were seen at long-term follow-up, highlighting the importance of active rehabilitation.


Assuntos
Traumatismos da Medula Espinal , Isquemia do Cordão Espinal , Adulto , Humanos , Estudos de Coortes , Estudos Retrospectivos , Infarto , Recuperação de Função Fisiológica
11.
Biophys J ; 122(13): 2696-2706, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37218131

RESUMO

Species belonging to the Bacillus cereus group form endospores (spores) whose surface is decorated with micrometers-long and nanometers-wide endospore appendages (Enas). The Enas have recently been shown to represent a completely novel class of Gram-positive pili. They exhibit remarkable structural properties making them extremely resilient to proteolytic digestion and solubilization. However, little is known about their functional and biophysical properties. In this work, we apply optical tweezers to manipulate and assess how wild-type and Ena-depleted mutant spores immobilize on a glass surface. Furthermore, we utilize optical tweezers to extend S-Ena fibers to measure their flexibility and tensile stiffness. Finally, by oscillating single spores, we examine how the exosporium and Enas affect spores' hydrodynamic properties. Our results show that S-Enas (µm-long pili) are not as effective as L-Enas in immobilizing spores to glass surfaces but are involved in forming spore-to-spore connections, holding the spores together in a gel-like state. The measurements also show that S-Enas are flexible but tensile stiff fibers, which support structural data suggesting that the quaternary structure is composed of subunits arranged in a complex to produce a bendable fiber (helical turns can tilt against each other) with limited axial fiber extensibility. Finally, the results show that the hydrodynamic drag is 1.5 times higher for wild-type spores expressing S- and L-Enas compared with mutant spores expressing only L-Enas or "bald spores" lacking Ena, and 2 times higher compared with spores of the exosporium-deficient strain. This study unveils novel findings on the biophysics of S- and L-Enas, their role in spore aggregation, binding of spores to glass, and their mechanical behavior upon exposure to drag forces.


Assuntos
Bacillus , Nanofibras , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Esporos Bacterianos , Pinças Ópticas , Bacillus cereus
12.
Analyst ; 148(9): 2141-2148, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37040186

RESUMO

Endospore-forming bacteria are associated with food spoilage, food poisoning, and infection in hospitals. Therefore, methods to monitor spore metabolic activity and verify sterilization are of great interest. However, current methods for tracking metabolic activity are time-consuming and resource intensive. This work investigates isotope labeling and Raman microscopy as a low-cost rapid alternative. Specifically, we monitor the Raman spectrum of enterotoxic B. cereus spores undergoing germination and cell division in D2O-infused broth. During germination and cell division, water is metabolized and deuterium from the broth is incorporated into proteins and lipids, resulting in the appearance of a Raman peak related to C-D bonds at 2190 cm-1. We find that a significant C-D peak appears after 2 h of incubation at 37 °C. Further, we found that the peak appearance coincides with the observed first cell division indicating little metabolic activity during germination. Lastly, the germination and cell growth rate of spores were not affected by adding 30% heavy water to the broth. This shows the potential for real-time monitoring of metabolic activity from a bacterial spore to a dividing cell. In conclusion, our work proposes tracking the evolution of the C-D Raman peak in spores incubated with D2O-infused broth as an effective and time-, and cost-efficient method to monitor the outgrowth of a spore population, simultaneously allowing us to track for how long the bacteria have grown and divided.


Assuntos
Esporos Bacterianos , Água , Óxido de Deutério/metabolismo , Óxido de Deutério/farmacologia , Água/metabolismo
13.
Biosens Bioelectron ; 231: 115284, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37031508

RESUMO

Bacterial spores are problematic in agriculture, the food industry, and healthcare, with the fallout costs from spore-related contamination being very high. Spores are difficult to detect since they are resistant to many of the bacterial disruption techniques used to bring out the biomarkers necessary for detection. Because of this, effective and practical spore disruption methods are desirable. In this study, we demonstrate the efficiency of a compact microfluidic lab-on-chip built around a coplanar waveguide (CPW) operating at 2.45 GHz. We show that the CPW generates an electric field hotspot of ∼10 kV/m, comparable to that of a commercial microwave oven, while using only 1.2 W of input power and thus resulting in negligible sample heating. Spores passing through the microfluidic channel are disrupted by the electric field and release calcium dipicolinic acid (CaDPA), a biomarker molecule present alongside DNA in the spore core. We show that it is possible to detect this disruption in a bulk spore suspension using fluorescence spectroscopy. We then use laser tweezers Raman spectroscopy (LTRS) to show the loss of CaDPA on an individual spore level and that the loss increases with irradiation power. Only 22% of the spores contain CaDPA after exposure to 1.2 W input power, compared to 71% of the untreated control spores. Additionally, spores exposed to microwaves appear visibly disrupted when imaged using scanning electron microscopy (SEM). Overall, this study shows the advantages of using a CPW for disrupting spores for biomarker release and detection.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Microbiológicas , Micro-Ondas , Esporos Bacterianos , Biomarcadores/análise , Estimulação Elétrica , Técnicas Microbiológicas/instrumentação , Técnicas Microbiológicas/métodos , Microscopia Eletrônica de Varredura , Pinças Ópticas , Espectrometria de Fluorescência , Análise Espectral Raman , Esporos Bacterianos/química , Esporos Bacterianos/metabolismo , Esporos Bacterianos/efeitos da radiação , Esporos Bacterianos/ultraestrutura
14.
Nat Commun ; 14(1): 1879, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019921

RESUMO

Conjugation is used by bacteria to propagate antimicrobial resistance (AMR) in the environment. Central to this process are widespread conjugative F-pili that establish the connection between donor and recipient cells, thereby facilitating the spread of IncF plasmids among enteropathogenic bacteria. Here, we show that the F-pilus is highly flexible but robust at the same time, properties that increase its resistance to thermochemical and mechanical stresses. By a combination of biophysical and molecular dynamics methods, we establish that the presence of phosphatidylglycerol molecules in the F-pilus contributes to the structural stability of the polymer. Moreover, this structural stability is important for successful delivery of DNA during conjugation and facilitates rapid formation of biofilms in harsh environmental conditions. Thus, our work highlights the importance of F-pilus structural adaptations for the efficient spread of AMR genes in a bacterial population and for the formation of biofilms that protect against the action of antibiotics.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Escherichia coli/genética , Farmacorresistência Bacteriana , Plasmídeos , Biofilmes , Conjugação Genética
15.
Res Microbiol ; 174(6): 104060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37068697

RESUMO

Spore-forming pathogenic bacteria are adapted for adhering to surfaces, and their endospores can tolerate strong chemicals making decontamination difficult. Understanding the physico-chemical properties of bacteria and spores is therefore essential in developing antiadhesive surfaces and disinfection techniques. However, measuring physico-chemical properties in bulk does not show the heterogeneity between cells. Characterizing bacteria on a single-cell level can thereby provide mechanistic clues usually hidden in bulk measurements. This paper shows how optical tweezers can be applied to characterize single bacteria and spores, and how physico-chemical properties related to adhesion, fluid dynamics, biochemistry, and metabolic activity can be assessed.


Assuntos
Pinças Ópticas , Análise Espectral Raman , Análise Espectral Raman/métodos , Esporos , Esporos Bacterianos , Bactérias
16.
Structure ; 31(5): 529-540.e7, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37001523

RESUMO

Bacterial adhesion pili are key virulence factors that mediate host-pathogen interactions in diverse epithelial environments. Deploying a multimodal approach, we probed the structural basis underpinning the biophysical properties of pili originating from enterotoxigenic (ETEC) and uropathogenic bacteria. Using cryo-electron microscopy we solved the structures of three vaccine target pili from ETEC bacteria, CFA/I, CS17, and CS20. Pairing these and previous pilus structures with force spectroscopy and steered molecular dynamics simulations, we find a strong correlation between subunit-subunit interaction energies and the force required for pilus unwinding, irrespective of genetic similarity. Pili integrate three structural solutions for stabilizing their assemblies: layer-to-layer interactions, N-terminal interactions to distant subunits, and extended loop interactions from adjacent subunits. Tuning of these structural solutions alters the biophysical properties of pili and promotes the superelastic behavior that is essential for sustained bacterial attachment.


Assuntos
Aderência Bacteriana , Proteínas de Fímbrias , Proteínas de Fímbrias/química , Microscopia Crioeletrônica , Fímbrias Bacterianas/química
17.
Gels ; 9(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36975621

RESUMO

Bioprinting nerve conduits supplemented with glial or stem cells is a promising approach to promote axonal regeneration in the injured nervous system. In this study, we examined the effects of different compositions of bioprinted fibrin hydrogels supplemented with Schwann cells and mesenchymal stem cells (MSCs) on cell viability, production of neurotrophic factors, and neurite outgrowth from adult sensory neurons. To reduce cell damage during bioprinting, we analyzed and optimized the shear stress magnitude and exposure time. The results demonstrated that fibrin hydrogel made from 9 mg/mL of fibrinogen and 50IE/mL of thrombin maintained the gel's highest stability and cell viability. Gene transcription levels for neurotrophic factors were significantly higher in cultures containing Schwann cells. However, the amount of the secreted neurotrophic factors was similar in all co-cultures with the different ratios of Schwann cells and MSCs. By testing various co-culture combinations, we found that the number of Schwann cells can feasibly be reduced by half and still stimulate guided neurite outgrowth in a 3D-printed fibrin matrix. This study demonstrates that bioprinting can be used to develop nerve conduits with optimized cell compositions to guide axonal regeneration.

18.
BMC Microbiol ; 23(1): 59, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879193

RESUMO

BACKGROUND: Clostridioides difficile is a spore forming bacterial species and the major causative agent of nosocomial gastrointestinal infections. C. difficile spores are highly resilient to disinfection methods and to prevent infection, common cleaning protocols use sodium hypochlorite solutions to decontaminate hospital surfaces and equipment. However, there is a balance between minimising the use of harmful chemicals to the environment and patients as well as the need to eliminate spores, which can have varying resistance properties between strains. In this work, we employ TEM imaging and Raman spectroscopy to analyse changes in spore physiology in response to sodium hypochlorite. We characterize different C. difficile clinical isolates and assess the chemical's impact on spores' biochemical composition. Changes in the biochemical composition can, in turn, change spores' vibrational spectroscopic fingerprints, which can impact the possibility of detecting spores in a hospital using Raman based methods. RESULTS: We found that the isolates show significantly different susceptibility to hypochlorite, with the R20291 strain, in particular, showing less than 1 log reduction in viability for a 0.5% hypochlorite treatment, far below typically reported values for C. difficile. While TEM and Raman spectra analysis of hypochlorite-treated spores revealed that some hypochlorite-exposed spores remained intact and not distinguishable from controls, most spores showed structural changes. These changes were prominent in B. thuringiensis spores than C. difficile spores. CONCLUSION: This study highlights the ability of certain C. difficile spores to survive practical disinfection exposure and the related changes in spore Raman spectra that can be seen after exposure. These findings are important to consider when designing practical disinfection protocols and vibrational-based detection methods to avoid a false-positive response when screening decontaminated areas.


Assuntos
Clostridioides difficile , Infecção Hospitalar , Humanos , Hipoclorito de Sódio/farmacologia , Ácido Hipocloroso/farmacologia , Desinfecção , Esporos Bacterianos , Infecção Hospitalar/prevenção & controle
19.
Acta Radiol ; 64(1): 67-73, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34851154

RESUMO

BACKGROUND: There are no published international consensus or guideline documents regarding appropriate medical follow-up for women with hereditary increased risk of breast cancer who opt for prophylactic mastectomy. Moreover, it is not known whether breast magnetic resonance imaging (MRI) performed after a prophylactic mastectomy is a reproducible method for evaluating whether clinically relevant amounts of residual glandular tissue remains. PURPOSE: To evaluate the inter- and intra-observer agreement on detecting residual glandular tissue with MRI. MATERIAL AND METHODS: In total, 40 women previously operated with prophylactic mastectomy underwent MRI and two breast radiologists (R1 and R2) independently assessed the presence of residual glandular tissue. Inter- and intra-rater agreements were assessed using Cohen's kappa (k). RESULTS: Residual glandular tissue was found in 69 of 248 quadrants (27.8%) and 32 of 62 breasts (51.6%) by R1 and 77 of 248 quadrants (31.1%) and 35 of 62 breasts (56.5%) by R2. The interrater agreement was observed to be moderate (k = 0.554) and the intra-rater agreement was observed to be substantial (k = 0.623). CONCLUSION: In conclusion, the inter-and intra-rater observer agreement in regard to detection of residual glandular tissue was not excellent, which would be desirable for a method considered reproducible enough to be used as a surveillance tool after the surgical procedure in order to ensure that there is no relevant residual glandular tissue remaining warranting further follow-up. More research is needed, as well as establishment of precise protocols, before using the method in risk assessment of remaining glandular tissue and breast cancer risk.


Assuntos
Neoplasias da Mama , Mastectomia Profilática , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Variações Dependentes do Observador , Mastectomia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Reprodutibilidade dos Testes
20.
PLoS Comput Biol ; 18(9): e1010074, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070320

RESUMO

ATP7B is a human copper-transporting P1B-type ATPase that is involved in copper homeostasis and resistance to platinum drugs in cancer cells. ATP7B consists of a copper-transporting core and a regulatory N-terminal tail that contains six metal-binding domains (MBD1-6) connected by linker regions. The MBDs can bind copper, which changes the dynamics of the regulatory domain and activates the protein, but the underlying mechanism remains unknown. To identify possible copper-specific structural dynamics involved in transport regulation, we constructed a model of ATP7B spanning the N-terminal tail and core catalytic domains and performed molecular dynamics (MD) simulations with (holo) and without (apo) copper ions bound to the MBDs. In the holo protein, MBD2, MBD3 and MBD5 showed enhanced mobilities, which resulted in a more extended N-terminal regulatory region. The observed separation of MBD2 and MBD3 from the core protein supports a mechanism where copper binding activates the ATP7B protein by reducing interactions among MBD1-3 and between MBD1-3 and the core protein. We also observed an increased interaction between MBD5 and the core protein that brought the copper-binding site of MBD5 closer to the high-affinity internal copper-binding site in the core protein. The simulation results assign specific, mechanistic roles to the metal-binding domains involved in ATP7B regulation that are testable in experimental settings.


Assuntos
ATPases Transportadoras de Cobre , Cobre , Sítios de Ligação , ATPases Transportadoras de Cobre/química , ATPases Transportadoras de Cobre/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...